若有收获,就点个赞吧
Hadoop MapReduce概述
Hadoop MapReduce是一个编程模型,用于处理和生成大数据集。它由Map和Reduce两个主要阶段组成。Map阶段负责处理输入数据,并将结果输出为键值对;Reduce阶段则对Map阶段的输出进行汇总和合并,生成最终结果。
为什么选择Hadoop MapReduce进行数据爬取
大规模数据处理能力:Hadoop MapReduce能够处理PB级别的数据,适合大规模数据爬取。
高容错性:Hadoop的设计允许单个节点失败而不影响整个计算任务。
易扩展性:Hadoop可以在廉价的硬件集群上运行,并且易于扩展。
灵活性:MapReduce模型允许开发者自定义Map和Reduce函数,以适应不同的数据处理需求。
实现大规模数据爬取的步骤
1. 环境准备
在开始之前,确保你的Hadoop环境已经搭建好,包括HDFS、YARN和MapReduce。此外,还需要安装Java开发环境,因为Hadoop的API是基于Java的。
2. 定义爬取任务
确定你要爬取的数据类型和来源。例如,你可能需要爬取特定领域的新闻网站或者社交媒体上的数据。
3. 编写MapReduce代码
以下是一个简单的Hadoop MapReduce程序,用于爬取网页数据并提取URL,并在代码中加入代理信息。
java
import java.io.IOException;
import java.net.URI;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WebCrawler {
  public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();
    @Override
    protected void setup(Context context) throws IOException, InterruptedException {
      super.setup(context);
      // 设置代理
      Configuration conf = context.getConfiguration();
      conf.set("http.proxyHost", "www.16yun.cn");
      conf.set("http.proxyPort", "5445");
      conf.set("http.proxyUser", "16QMSOML");
      conf.set("http.proxyPassword", "280651");
    }
    public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
      StringTokenizer itr = new StringTokenizer(value.toString());
      while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());
        context.write(word, one);
      }
    }
  }
  public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
    private IntWritable result = new IntWritable();
    public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
      int sum = 0;
      for (IntWritable val : values) {
        sum += val.get();
      }
      result.set(sum);
      context.write(key, result);
    }
  }
  public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    Job job = Job.getInstance(conf, "web crawler");
    job.setJarByClass(WebCrawler.class);
    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    FileInputFormat.addInputPath(job, new Path(args[0]));
    FileOutputFormat.setOutputPath(job, new Path(args[1]));
    System.exit(job.waitForCompletion(true) ? 0 : 1);
  }
}






待会儿见
K哥馆
mayun
文鼎_应老师
课课家运营团队
liangchsh
启程软考
