随着云计算、物联网和互联网等技术的快速发展,各种移动设备、传感网络、电商网站、社交网络时时刻刻都在生成各种各样类型的数据,大数据时代已经到来。大数据即数据体量巨大、数据类型多样、数据的质量低、处理速度迅速的数据。大数据分析的核心是从大量数据中获取有价值的内容,更准确、更深层次的知识,而不是对数据简单的统计和分析。
在大数据处理的过程中,数据分析是核心,因为大数据的价值全部在数据分析过程中产生。互联网、硬件等技术迅猛发展,加深了人们对数据分析的需求。如果大数据是一种产业,赚钱的重点在于如何提高数据的分析能力,通过分析发现数据的更多潜在的价值。在大数据时代,数据分析是数据价值发现的最重要环节,也是决策的决定性元素。
大数据挖掘与分析的关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据实时处理、大数据可视化和应用等。
1、大数据采集技术
大数据采集一般分为大数据智能感知层和基础支撑层。 智能感知层重点攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。基础支撑层重点攻克提供大数据服务平台所需的虚拟服务器、数据库及物联网络资源等处理技术。
2 、大数据预处理
大数据预处理是指在大数据挖掘前期对大数据进行的一些提前处理。预处理包括数据清理、数据集成、数据变换和数据归约等几种方法。
大数据的特点是数据量大,但并没有增加数据价值,相反增多了数据噪音,有很多数据放在存储器里就没再用过。数据量的突然增加,各种媒体数据被任 意碎片化。在应对处理大数据的技术挑战中,大数据的降噪与清洗技术值得高度重视。
3、大数据管理
大数据不断地从复杂的应用系统中产生,并且将会以更多、更复杂、更多样化的方式持续增长。多样化的物联网传感设备不断地感知着海量的具有不同格式的数据。物联网系统中大数据的复杂化和格式多样化,决定了物联网系统中针对大数据的应用场景和服务类型的多样化,从而要求物联网大数据管理系统必须采用特定技术来处理各种格式的大数据,而现在针对特定数据类型和业务的系统已经无法满足多样化需求,因此,设计新的具有可扩展性的系统架构已经成为大数据管理的研究热点。
4、大数据实时处理
根据大数据速度快的特点,时间越长,数据的价值也在不断衰减,因此很多领域需要对数据进行实时处理。大数据时代,伴随着各种应用场景的数据分析从离线转向了在线,实时处理的需求不断提高。大数据的实时处理面临着一些新的挑战,主要体现在数据处理模式和算法的选择及改进。
5、大数据可视分析
大数据可视分析是指在大数据自动挖掘的同时,融合计算机的计算能力和人的认知能力,利用人机交互技术和可视化界面,获得大规模复杂数据集的分析能力。在大数据时代,大数据可视化是必须尽快解决 的关键问题,为大数据服务的研究指明了方向。
北京理工大学大数据搜索与挖掘实验室张华平主任研发的NLPIR大数据语义智能分析技术是满足大数据挖掘对语法、词法和语义的综合应用。NLPIR大数据语义智能分析平台是根据中文数据挖掘的综合需求,融合了网络精准采集、自然语言理解、文本挖掘和语义搜索的研究成果,并针对互联网内容处理的全技术链条的共享开发平台。
NLPIR大数据语义智能分析平台主要有精准采集、文档转化、新词发现、批量分词、语言统计、文本聚类、文本分类、摘要实体、智能过滤、情感分析、文档去重、全文检索、编码转换等十余项功能模块,平台提供了客户端工具,云服务与二次开发接口等多种产品使用形式。各个中间件API可以无缝地融合到客户的各类复杂应用系统之中,可兼容Windows,Linux, Android,Maemo5, FreeBSD等不同操作系统平台,可以供Java,Python,C,C#等各类开发语言使用。
数据挖掘技术及其应用是目前国际上的一个研究热点,并在许多行业中得到了很好的应用,尤其是在市场营销中获得了成功,初步体现了其优越性和发展潜力。在信息管理领域,综合应用数据挖掘技术和人工智能技术,获取用户知识、文献知识等各类知识,将是实现知识检索和知识管理发展的必经之路。
版权声明:原创作品,允许转载,转载时请务必以超链接形式标明文章原始出处、作者信息和本声明,否则将追究法律责任。https://blog.kokojia.com/ljrj123/b-2086.html